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Pressure response curve of the graphene-based pressure transducer.
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[1]. Shrestha, Sumit Bam, and Garrick Orchard. "Slayer: Spike layer error reassignment in time." Advances in Neural
Information Processing Systems. 2018.
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We tested VT-SNN framework on two robotic tasks:
- Container and weight classification
- Rotational slip classification
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* 4 objects, 5 different weights = 20 classes
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» 5-fold cross validation for testing the models
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We proposed

NeuTouch — event-based tactile sensor.
A VT-SNN framework that combines side and
touch event-based data. Prophesee Spikes
VT-SNN framework is tested on two robot 5
tasks: =
1. Container and weight classification
2. Rotational slip classification
We put our datasets/code publicly available

and can be found with following link:

Combination
Layer

Vision
SNN

Task Output
SNN Spikes

NeuTouch Spikes

[O000000
v

Tactile
SNN

https://clear-nus.github.io/visuotactile/
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